

Lectures on energy sources, conversion techniques and environmental issues.

#### Ing. Mattia De Rosa

Tambov State Technical University (TГТУ) 20<sup>th</sup> October 2014

DIME/TEC





# Contents

#### **COURSE SCHEDULE**

- Introduction on the energy context
  - Energy demand, user sectors and environmental issues.
  - Energy sources and carriers
  - Non-renewable sources (fossil fuels)
  - Renewable sources (solar, hydroelectric, wind, biomass, geothermic, ...)
- <u>Energy conversion</u>
  - Thermodynamic power cycles
  - Thermal power systems (fossil fuels, nuclear, combined cycles)
  - Renewable power systems (photovoltaic and concentrated thermal solar plant, hydroelectric, wind, biomass, geothermic, etc.)
- Energy systems modeling
  - Global regional energy demand for different sectors, types of users, etc.
  - Tools for modeling energy systems
  - Introduction on EnergyPlan
  - Training on the use of EnergyPlan using simple tutorials.
  - Modeling an energy system practice.



#### **Energy System**





#### When should a physical system be considered an energy source?

Generally, a physical system contains energy if, potentially, it is able to do work (in a physical sense).

Moreover, a physical system containing energy can be considered a **SOURCE** if it is possible to make, at least, part of this energy available in quantity and with characteristics useful for the utilization by the human being.

In other words, if: {
it can be controlled
it is economically viable



The energy sources owns different intrinsic characteristics, which regard:

- Availability (constant, periodical, aleatory)
- **Type** of energy which can be produced (thermal, mechanical, electric)
- **Costs** for supply, plants and maintenances
- Environmental impact (depending also on the adopted standards of each country)
- **Specific power** (energy per unit of mass/volume, surface area required by plants, etc.)
- Power plant scale (in terms of economies of scale)
- Power plant conversion **efficiencies**
- Security and related risks
- **Storage** options

#### **Renewable and non-renewable energies**



nige

# **Primary and secondary energies**



#### **Definitions:**

nige

**Primary energy:** energy forms which can be found in nature directly without any conversion or transformation process.

**Transformation:** any process aimed to transform one form of energy to another. **Secondary energy:** all sources of energy that result from transformation of primary sources.



The primary energy sources need to be converted into more useful energy forms permitting their transfers and movements.

This "middle" energy forms are defined **ENERGY CARRIER**.

#### **Definition according to ISO :**

"A substance or phenomenon that can be used to produce mechanical work or heat or to operate chemical or physical processes".

Generally, it is possible to define an energy carrier as a medium to transfer an energy form to another one.



### **Common units**

| To:   | LΤ                        | Gcal            | Mtoe                    | MBtu                    | G₩h                      |
|-------|---------------------------|-----------------|-------------------------|-------------------------|--------------------------|
| From: | multiply by:              |                 |                         |                         |                          |
| LT    | 1                         | 238.8           | 2.388 x10 <sup>-5</sup> | 947.8                   | 0.2778                   |
| Gcal  | 4.1868 x 10 <sup>-3</sup> | 1               | 10-7                    | 3.968                   | 1.163 x 10 <sup>-3</sup> |
| Mtoe  | 4.1868 x 10 <sup>4</sup>  | 10 <sup>7</sup> | 1                       | 3.968 x 10 <sup>7</sup> | 11630                    |
| MBtu  | 1.0551 x 10 <sup>-3</sup> | 0.252           | 2.52 x 10 <sup>-8</sup> | 1                       | 2.931 x 10 <sup>-4</sup> |
| GW/h  | 3.6                       | 860             | 8.6 x 10 <sup>-5</sup>  | 3412                    | 1                        |



#### **Environmental issues**



Sources: Okanagan university college in Canada, Department of geography, University of Oxford, school of geography; United States Environmental Protection Agency (EPA), Washington; Climate change 1995, The science of climate change, contribution of working group 1 to the second assessment report of the intergovernmental panel on climate change, UNEP and WMO, Cambridge university press, 1996.



#### **Environmental issues**





#### **Environmental issues**

#### Main pollutants related to combustion

| Туре                              | Effect                                                      | Residence<br>times                                   |
|-----------------------------------|-------------------------------------------------------------|------------------------------------------------------|
| CO <sub>2</sub> – Carbon dioxide  | Greenhouse gas                                              | High<br>global effects                               |
| CO - Carbon monoxide              | Toxic                                                       | Low<br>local effects                                 |
| HC - Hydrocarbon                  | Toxic, acid deposits,<br>carcinogen,<br>greehouse gas (CH4) | Low, local effects<br>(CH4: high,<br>global effects) |
| NO <sub>x</sub> – Nitrogen oxides | Toxic, acid deposits                                        | Low, local effects                                   |
| $SO_x$ – Sulfur oxides            | Toxic, acid deposits                                        | Low, local effects                                   |
| PM - Particulates                 | Toxic                                                       | Low, local effects                                   |



- Turn on a 100W lamp for 7 minutes
- Heat 10 liters of water increasing its temperature of 1°C
- Lift a weight of 40 quintals

All these consumptions need the amount of energy owned by 1 gram of petrol (about 42kJ or 0.01kWh)

The cost depends on the type of fuel and on the Country



# **World Energy Consumption**

Tambov State Technical University (TГТУ) 20<sup>th</sup> October 2014

Ing. Mattia De Rosa



#### World primary energy consumption (in Mtoe) by region



Source: IEA 2014

\*\*Asia excludes China.



#### 1973 and 2012 regional shares of TPES



Source: IEA 2014

\*Asia excludes China.



#### World primary energy consumption (in Mtoe) by fuel



Source: IEA 2014

\*\*\*Includes geothermal, solar, wind, heat, etc.



#### 1973 and 2012 fuel hares of TPES

2012 1973 Biofuels Biofuels Hydro 1.8% and waste and waste Hydro Other\*\*\* Other\* 10.0% 10.5% 2.4% 0.1% 1.1% Coal\*\* Coal\*\* Nuclear Nuclear 24.6% 29.0% 0.9% 4.8% Natural gas 16.0% Natural 21.3% Oil Oil 46.1% 31.4% 6 106 Mtoe 13 371 Mtoe

Source: IEA 2014

\*\*\*Includes geothermal, solar, wind, heat, etc.

#### **CO<sub>2</sub> Emissions**

unige

Università degli Studi





## **CO<sub>2</sub> Emissions**





#### **Population and income growth**

- Population and income growth are the key drivers behind growing demand for energy. By 2030 world population is projected to reach 8.3 billion, which means an additional 1.3 billion people will need energy.
- Low and medium income economies account for over 90% of population growth to 2030. Due to their rapid industrialization, urbanization and motorization, they also contribute 70% of the global GDP growth and over 90% of the global energy demand growth.



#### Source: BP Energy Outlook 2013



OECD: Organization for Economic Co-operation and Development





Adapted from BP Energy Outlook 2013



#### **Global energy trends to 2035**

IEA (International Energy Agency) in its World Energy Outlook 2013 investigated 3 different scenarios:

<u>Current Policies Scenario</u>: takes into account only of policies already enacted.

<u>New Policies Scenario</u>: cautious implementation of already announced policies (but not enacted yet).

<u>450 Scenario</u>: implementation of measures in order to have a 50% chance of keeping to 2°C the long-term increase in average global temperature.



#### World primary energy demand and related CO2 emissions for different scenarios





# World primary energy demand for the new policy scenario





Today's share of fossil fuels in the global mix, at 82%, is the same as it was 25 years ago; the strong rise of renewables only reduces this to around 75% in 2035





#### World primary energy demand and related CO2 emissions for different scenarios





#### World primary energy demand and related CO2 emissions for different scenarios





Tambov State Technical University (ΤΓΤΥ) 20<sup>th</sup> October 2014

Ing. Mattia De Rosa



Generally, fossil fuels consist of hydrocarbon mixtures.

It is possible to classify them depending on their: (i) physical state (liquid, solid or gases), (ii) lower heating value (LHV) and (iii) application fields).





The LHV value is an intrinsic characteristic of each fuel and it can be considered as a measure of their **energetic intensity**.

**e.g.** to produce 1 kWh (thermal) are necessary about:

- Wood: 0.5 kg
- Coal: 0.25 kg
- Oil: 0.18 kg
- Natural gas: 0.2 m<sup>3</sup>

**e.g.** to supply a power plant of 1000MW kWh are necessary about:

- PWR reactor: 20ton Uranium (1 truck)
- Breeder nuclear reactor: 2ton Uranium (about 1m<sup>3</sup>)
- Fuel oil:  $2 \cdot 10^6$  ton
- Coal:  $2.5 \cdot 10^6$  ton (about 2-3 train/day)
- Combined gas cycle: 1 high pressure (~80bar) pipeline D=50cm

**Energetic density:** the surface necessary to produce an amount of electric energy or power.

e.g. to produce 1000MWel with a combined gas cycle or with a nuclear power plant, are necessary about 100-200 hectares of land.



#### **Density and heat for different fuels**





#### **Expected total remaining recoverable resources**





#### Coal

Sedimentary rock formed by accumulation of organic debris which are modified by pressure and temperature inside the Earth's crust.



The transformation process is based on the gradual elimination of components, such as hydrogen and oxygen, with the consequent enrichment of carbon.

In practice, a continuous distribution of coals, from PEAT to ANTHRACITE, occur.



### Coal

Sedimentary rock formed by accumulation of organic debris which are modified by pressure and temperature inside the Earth's crust.






## Carbon content





# Coal

|                 | Type of Coal         | Composition           | LHW [MJ/kg] |
|-----------------|----------------------|-----------------------|-------------|
|                 | Peat                 | Humidity > 50%        | 10-15       |
| Main coal types | Lignite (brown coal) | With sulfur and ashes | 12-20       |
| cnaracteristics | Sub-bituminous coal  | 60-70% C              | 20-25       |
|                 | Bituminous coal      | 70-80% C              | 25-30       |
|                 | Anthracite           | >90% C                | 30-32       |



The main uses of coal are aimed to:

- Power generation (electrical power plant)
- Steel production
- Concrete production



# Coal

The main problems related to the use of coal is the environmental impact of its **handling** (dusts) and **combustion** (dusts, ashes and smokes).

In particular, the combustion produces:

- CO<sub>2</sub> and CO related to a partial oxidation of carbon
- Particulate, dusts and ashes.
- $SO_2$  and  $SO_3$  that, if in contact with water, can form sulfuric acid

**Emissions** 

treatment

• Nitrogen oxides (NO<sub>x</sub>), especially for high temperature combustion





As a fossil fuel, petroleum is formed when large quantities of dead organisms, usually zooplankton and algae, are buried under sedimentary rock and subjected to intense heat and pressure.



The crude oil is a naturally occurring brown to black flammable liquid and it is mainly constituted of hydrocarbons mixed with variable amounts of sulfur, nitrogen, and oxygen compounds.



## **Composition by weight:**

- Carbon: 82-87%
- Hydrogen: 10-14%
- Nitrogen: 0.1-2%
- Oxygen: 0.1-1.5%
- Sulfur: 0.1-6%
- Metals: < 1%



- The methods and rates of **OIL EXTRACTION** in reservoirs are of three types:
- **Primary recovery**: the oil is extracted using the existing pressure in the reservoir (recovery rate: ~20%).
- Secondary recovery: the extraction is aided with artificial pressurization of the reservoir, made through the injection of inert gas (recovery rate: ~30-35%).





 Tertiary recovery: artificial pressurization and heating by injection of steam, or other chemical thinners fluids, in the reservoir (recovery rate: ~40-45%).



Generally, crude oils cannot be used directly as fuels, due to the complex nature of the crude oil mixture and the presence of some impurities that are corrosive or poisonous to processing catalysts.





Crude oils differ appreciably in their properties according to origin and the ratio of the different components in the mixture.

The American Petroleum Institute gravity scale (degrees API) is the main scale of the relative density (or specific gravity) of crude oil.

$$^{\circ}API = \frac{141.5}{\rho_{60^{\circ}F}} - 131.5$$

Great API values (40-45°) indicate **light** (and more valuable) oil. **Heavy** oil normally assumes API values between 10-12°.

The sulfur content is another important parameter:

- Low sulfur content (< 0.42%) : sweet crude oil (more valuable)
- **High sulfur content** (> 0.50%): sour crude oil (less valuable)

The sulfur should be avoided because it is a source of pollution and corrosion in the power plants.



## World Oil Reserves (2012)



Source: ENI Oil and Gas Review (2013)



increasing degree of economic feasibility

## Petroleum

## **McKelvey diagram for coal (or gas) resources**

|   |             | IDENTIFIED RESOURCES                     |                                      | UNDISCOVERE  | UNDISCOVERED RESOURCES |  |
|---|-------------|------------------------------------------|--------------------------------------|--------------|------------------------|--|
| 1 |             | Demonstrated                             | Inferred                             | Hypothetical | Speculative            |  |
|   | Economic    | reserves                                 | inferred reserves                    |              |                        |  |
|   | Subeconomic | demonstrated<br>subeconomic<br>resources | inferred<br>subeconomic<br>resources |              | -                      |  |

increasing degree of geologic assurance

Source: McKelvey, V.E. 1972. "Mineral Resource Estimates and Public Policy." American Scientist 60 (1): 32-40



# The use of oil



Source: Elaboration from IEA data (2013)



Mixture of hydrocarbon, with a great prevalence of **METHANE** (CH4) and non-combustible in gaseous state.

## Main characteristics:

- Liquefaction temperature: -161 °C
- Specific weight (at SC) =  $0.678 \text{ kg/m}^3$
- Odorless
- Colorless
- Non-toxic
- LHV = 50-55 MJ/kg

## COMPOSITION

| Gas                  | Algeria | Netherland | Russia | Italy |
|----------------------|---------|------------|--------|-------|
| Methane              | 83.5    | 92.2       | 98.3   | 99.43 |
| Ethane               | 7.7     | 3.4        | 0.6    | 0.06  |
| Propane +<br>Buthane | 2.7     | 1.1        | 0.2    | 0.03  |
| Others               | 0.3     | 1.2        | 0.03   | 0.02  |
| CO <sub>2</sub>      | 0.2     | 0.9        | 0.1    | 0.03  |
| Nitrogen             | 5.6     | 2.2        | 0.8    | 0.43  |
| Helium               | 0.15    | 0.03       | 0.01   | 0.00  |

Generally, it is extracted from the underground in its natural state or togheter with liquid hydrocarbon from which it is subsequently separated.



## Schematic geology of natural gas resources





## **Main exporting countries**



Source: AIEE and ENI







## Natural gas in Europe





## Main international trade (in 10<sup>9</sup> m<sup>3</sup>)





## The impact of transportation costs on natural gas economics and on investment choices











# **Renewable energies**

Tambov State Technical University (TГТУ) 20<sup>th</sup> October 2014

Ing. Mattia De Rosa



# **Renewable energies**

The Earth can be seen as a closed system in which energy sources can be internal and external.

The majority of the energy sources in the Earth are strictly connected with the Sun.

- Solar energy
- Wind energy
- Hydroelectric
- Biomass
- Wave motion

Takes their origin from the energetic cycles due to the Sun.

Exceptions:

- Tides
- Geothermal energy



## **Renewable energies**

# Sun energy cycles





# Solar energy

The solar energy reaches the Earth's ground in the form of electromagnetic waves after passing through the atmosphere that acts as a filter.

The solar irradiance on a normal surface outside the atmosphere is about  $1637 \text{ W/m}^2$ . This value fluctuates of about 3% with the variation of the distance Earth-Sun during the year.







Effect of Earth's atmosphere on the solar spectrum



## Solar energy





## Solar energy

## **PASSIVE USE**

#### **Energy saving measures**

Reduce the heating energy consumption in building by adopting several measures exploiting the solar radiation.





# The use of solar energy

## **DIRECT USES**

**Thermal solar applications:** Heating of fluids for thermal uses, e.g. dhomestic solar collector, or electrical production, concentrating solar power (CSP).

> Photovoltaic solar panels: direct generation of electric energy



The heat collected by the solar panels is used directly, e.g. DHW (Domestic Hot Water)  $\rightarrow$  LOW TEMP. APPLICATIONS

In order to maximize the energy use, the solar collectors must have several characteristics, such as:

- Low temperature range of operation;
- High transmission coefficient of the glass;
- High absorptivity coefficient of the absorber at low wavelengths;



- Low emissivity coefficient of the absorber at higher wavelengths;
- Low heat transfer coefficient between the absorber and the external air.



# **Simplified solar collector energy balance**

(steady state)



# **Types of collectors**

## **Collector without glass**



## Single glazed collector



## **Double glazed collector**





## **Selective surface collector**

## Flat plat vacuum collector



## **Evacuated solar collectors**





# **Collector efficiency of various liquid collectors**



Source: S.A. Kalogirou. Progress in Energy and Combustion Science 30 (2004) 231–295



# **System configuration**

## **Forced convection**



- The fluid flows by using a circulating pump.
- Higher cost and more complex installation.
- Wide range of user demand.

## **Natural convection** Solar collector + Storage.



The fluid flows thanks to the natural convection (no pump).

Lower cost Simple installation. Low user demand.





# **Concentrating Solar Power (CSP)**

This technology is based on the fact that an absorber, subjected to a concentrated solar irradiation, can be heated up to hundreds Celsius degrees permitting a **thermodynamic cycle** to produce mechanical work convertible in electric energy.

| Type of Collector                    | Concentration Ratio | Typical Working<br>Temperature Range (°C) |
|--------------------------------------|---------------------|-------------------------------------------|
| Flat plate collector                 | 1                   | ≤70                                       |
| High-efficiency flat plate collector | 1                   | 60-120                                    |
| Fixed concentrator                   | 2-5                 | 100-150                                   |
| Parabolic trough collector           | 10-50               | 150-350                                   |
| Parabolic dish collector             | 200-2000            | 250-700                                   |
| Central receiver tower               | 200-2000            | 400-1000                                  |











# **Concentrating Solar Power (CSP)**

## **CSP** simplified system



# <section-header>





## **Solar Tower**





## CSP "SOLAR ONE" (Barstow, California, USA)

- Solar field: 1818 heliostats with an active surface of 39.9 m<sup>2</sup>
- Receiver: height 98.8 m. Active surface: 13.7 m (height) and 7 m (diameter)
- Inside the absorber: 1680 tubes with a diameter of 12.7mm
- Working fluid: water-steam
- Storage fluid: diathermic oil



# **Solar Tower**

## Molten salt technology

Design, construction and commercial operation of a 15MWe "solar-only" power plant to be built in southern Spain.



- Power output (gross): 15 MW
- Annual production (gross):
  84 GWh
- Steam generator: 40 MWt
- Receiver: cylindical 120 MWt
  - Tower: 115 m
  - Heliostat field: 263,600 m<sup>2</sup>
  - 3.8 solar multiple
  - 63% annual capacity factor



# **Photovoltaic conversion**



At high enough temperatures, or for **photon absorption**, some **electrons** in the valence band can move the conduction band, leaving holes (positive charges) in the valence band.

Both conduction electrons or valence holes are charges able to carry the electric current.

This technology allows to convert directly solar energy into electric energy, exploiting the property of several **semiconductors** (properly processed) to generate electricity when they are subject to the solar radiation.





# **Photovoltaic conversion**

## Example: silicon crystal (Si)

|      | IIIA | IVA    | VA       | VIA |
|------|------|--------|----------|-----|
|      | B    | 0<br>° | N        | O   |
| пв   | AI   | Si     | P¹⁵      | S   |
| Zn³⁰ | Ga   | Ge     | As       | Se  |
| Cd   | In   | sn     | ₅₁<br>Sb | Te  |

The Si is not a good conductor in its pure (or intrinsic) state due to the absence of free electrons



Impurities insertion into an intrinsic semiconductor for the purpose of modulating its electrical properties.





# **Photovoltaic conversion**

## The junction

Where an *n*-type semiconductor comes into contact with a *p*-type semiconductor, a *pn* junction is formed. In thermal equilibrium there is no net current flow

Since there is a concentration difference of holes and electrons between the two types of semiconductors, holes diffuse from the *p*type region into the *n*-type region and, similarly, electrons from the *n*-type material diffuse into the *p*-type region. As the carriers diffuse, an electric field (or electrostatic potential difference) is produced, which limits the diffusion of further holes and electrons.



Depletion zone (zona di svuotamento)


The junction is a semiconductor diode and if a potential difference between P and N is applied, a migration of electric charges occur:

- with an open circuit, the migration of electric charges through the junction produces a charge accumulation until a voltage equilibrium is reached.
- if the circuit is close in a load, we obtain current.





The cells are assemby in modules.... and the modules in arrays









![](_page_74_Picture_0.jpeg)

#### **Commercial PV panel**

![](_page_74_Figure_3.jpeg)

![](_page_74_Picture_4.jpeg)

#### Polycristalline module SHARP ND-(RxxxA5)

| Cell material                              | Required PV a                                                        | rea for 1kW <sub>p</sub> |
|--------------------------------------------|----------------------------------------------------------------------|--------------------------|
| Mono-crystalline<br>High performance cells | 7m <sup>2</sup> -9m <sup>2</sup><br>6m <sup>2</sup> -7m <sup>2</sup> |                          |
| Polycrystalline                            | 7.5m <sup>2</sup> 10m <sup>2</sup>                                   |                          |
| Copper indium diselenide (CIS)             | 9m²-11m²                                                             |                          |
| Cadmium telluride (CdTe)                   | 12m <sup>2</sup> -17m <sup>2</sup>                                   |                          |
| Amorphous silicon                          | 14m <sup>2</sup> -20m <sup>2</sup>                                   |                          |

| <b>•</b>                          |      |           |           |           |           |           |    |
|-----------------------------------|------|-----------|-----------|-----------|-----------|-----------|----|
|                                   |      | ND-R250A5 | ND-R245A5 | ND-R240A5 | ND-R235A5 | ND-R230A5 |    |
| Maximum power                     | Pmax | 250       | 245       | 240       | 235       | 230       | wp |
| Open-circuit voltage              | Voc  | 37.6      | 37.3      | 37.2      | 36.8      | 36.4      | v  |
| Short-circuit current             | lsc  | 8.68      | 8.62      | 8.57      | 8.49      | 8.41      | Α  |
| Voltage at point of maximum power | Vmpp | 30.9      | 30.7      | 30.4      | 30.3      | 30.3      | v  |
| Current at point of maximum power | Impp | 8.10      | 7.99      | 7.90      | 7.76      | 7.61      | Α  |
| Module efficiency                 | ηm   | 15.2      | 14.9      | 14.6      | 14.3      | 14.0      | %  |

STC = Standard Test Conditions: irradiance 1,000 W/m², AM 1.5, cell temperature 25 °C.

Rated electrical characteristics are within ±10% of the indicated values of I<sub>SD</sub> V<sub>oc</sub> and 0 to +5% of P<sub>max</sub> (power measurement tolerance ±3%).

#### ELECTRICAL DATA (AT NOCT)

| · · · · · · · · · · · · · · · · · · · |                 |           |           |           |           |           |    |
|---------------------------------------|-----------------|-----------|-----------|-----------|-----------|-----------|----|
|                                       |                 | ND-R250A5 | ND-R245A5 | ND-R240A5 | ND-R235A5 | ND-R230A5 |    |
| Maximum power                         | Pmax            | 180.2     | 176.6     | 173.0     | 169.3     | 165.7     | Wp |
| Open-circuit voltage                  | Voc             | 36.7      | 36.4      | 36.4      | 36.0      | 35.6      | v  |
| Short-circuit current                 | l <sub>sc</sub> | 7.0       | 6.96      | 6.92      | 6.85      | 6.79      | Α  |
| Voltage at point of maximum power     | Vmpp            | 27.7      | 27.5      | 27.2      | 27.1      | 27.1      | v  |
| Nominal Operating Cell Temperature    | NOCT            | 47.5      | 47.5      | 47.5      | 47.5      | 47.5      | °C |

NOCT: Module operating temperature at 800 W/m<sup>2</sup> irradiance, air temperature of 20 °C, wind speed of 1 m/s

| LIMIT VALUES            |                        | MECHANICAL DATA |                      | TEMPERATURE COEFFICIENT |               |
|-------------------------|------------------------|-----------------|----------------------|-------------------------|---------------|
|                         |                        |                 |                      |                         |               |
| Maximum system voltage  | 1,000 V DC             | Length          | 1,652 mm (+/-3.0 mm) | Pmax                    | -0.440%/°C    |
| Over-current protection | 15 A                   | Width           | 994 mm (+/-2.0 mm)   | Voc                     | -0.329 % / °C |
| Temperature range       | -40 bis +90°C          | Depth           | 46 mm (+/-0.8 mm)    | lsc                     | +0.038% / °C  |
| Maximum mechanical load | 2,400 N/m <sup>2</sup> | Weight          | 19 kg                |                         |               |

![](_page_74_Figure_15.jpeg)

CHARACTERISTIC CURVES ND-R250A5

#### **GENERAL DATA**

| Cells          | polycrystalline, 156.5 mm × 156.5 mm, 60 cells in series                                                                                                                                                                              |
|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Front glass    | low iron tempered glass, 3 mm                                                                                                                                                                                                         |
| Frame          | anodized aluminium alloy, silver                                                                                                                                                                                                      |
| Connection box | PPE/PPO resin, IP65 rating, 58 × 125 × 15 mm, 3 bypass diodes                                                                                                                                                                         |
| Cable          | 4 mm², length 900 mm                                                                                                                                                                                                                  |
| Connector      | SMK (MC4 compatible), Type CCT9901-2361F/2451F (Catalogue no. P51-7H/R51-7), IP67 rating<br>To extend the module connection leads, only use SMK connector from the same series<br>or MultiContactAG MC4 connector (PV-KST04/PV-KBT04) |

#### REAR VIEW 813.5±5 4 x grounding hole 0 5.1 91.6 4 × mounting hole Ø 9 1,582

#### REGISTRATION

Sharp Solar guarantees the safety, guality and value of your product over many years - the only thing we ask you to do is to register your modules with the serial number, so that we can send you the guarantee certificate. Register your modules quickly and easily at www.brandaddedvalue.net.

Sharp Energy Solution Europe - a division of Sharp Electronics (Europe) GmbH - Sonninstrasse 3, 20097 Hamburg, Germany - Tel: +49(0)40/2376-0 - Fax: +49(0)40/2376-2193

![](_page_75_Picture_0.jpeg)

# System configuration

### **Stand-alone configuration**

Several batteries are installed as storage for the energy produced in surplus.

## **Grid-connected configuration**

The direct current produced by the PV panels is converted in alternative current (inverter) and, then, led into the grid.

![](_page_75_Figure_7.jpeg)

- High cost of the batteries.
- Low consumption users.
- Energy supply is not guaranteed.

![](_page_75_Figure_11.jpeg)

• Production system is decoupled from the user.

ERSATILITY

![](_page_76_Picture_0.jpeg)

### Evolution of total installed PV capacity in the world

![](_page_76_Figure_3.jpeg)

#### Source: IEA PVPS Report IEA-PVPS T1-24:2014

![](_page_77_Picture_0.jpeg)

![](_page_77_Picture_2.jpeg)

Partially buildingintegrated PV

#### **Building-integrated PV configuration**

![](_page_78_Picture_0.jpeg)

Hydroelectric power plants use the kinetic and potential energies owned by water masses located at different altitude above the ground level.

Considering a water mass located at a height **Z** and with the following characteristics:

- $\gamma (= \rho \cdot g) = \text{specific weight } [kg/(m^2s^2)]$
- $\mathbf{Q}_{\mathbf{v}}$  = volumetric flow rate [m<sup>3</sup>/s]
- **p** = pressure [MPa]
- **v** = water velocity [m/s]

![](_page_78_Picture_8.jpeg)

![](_page_78_Figure_9.jpeg)

 $\frac{POWER}{P = \gamma Q_{v}H}$ 

![](_page_78_Figure_11.jpeg)

![](_page_79_Picture_0.jpeg)

### **Classification:**

On the base of the **water head**:

- Lower (Z < 20 m)
- Medium (Z < 250 m)
- High (Z > 250 m)

On the base of volumetric **flow rate**:

- Small ( $Q_v < 10 \text{ m}^3/\text{h}$ )
- Medium ( $Q_v < 100 \text{ m}^3/\text{h}$ )
- Great ( $Q_v > 100 \text{ m}^3/\text{h}$ )

The **Reservoir duration** is the time required for filling the useful hydroelectric reservoir with the mean yearly volumetric flow rate. Therefore:

- <u>Seasonal storage sys</u>tem: reservoir duration greater than 400 hours;
- <u>Modulating storage system</u>: reservoir duration between 2 and 400 hours.
- <u>Run-of-the-river</u>: no or limited reservoir (duration less than 2 hours).

![](_page_79_Figure_15.jpeg)

![](_page_80_Picture_0.jpeg)

### **Pelton turbine**

![](_page_80_Picture_3.jpeg)

![](_page_80_Figure_4.jpeg)

#### **Turbine Blades**

![](_page_80_Picture_6.jpeg)

#### **Francis turbine**

![](_page_80_Picture_8.jpeg)

![](_page_80_Figure_9.jpeg)

![](_page_80_Picture_10.jpeg)

![](_page_81_Picture_0.jpeg)

![](_page_81_Figure_2.jpeg)

![](_page_82_Picture_0.jpeg)

Upper Reservoir

**Night time Flow** 

# Hydropower

### **Pumped-storage system**

**Daytime Flow** 

Power

Station

Lower

Reservoir

- During periods of high electrical demand, the water stored is released through turbine to produce electricity.
- During the low-cost off-peak electric power is used to pump the water in the upper reservoir.

![](_page_82_Figure_5.jpeg)

Pumped storage hydro

![](_page_83_Picture_0.jpeg)

### **Historical trends in world electricity production**

The role of Hydropower

![](_page_83_Figure_4.jpeg)

![](_page_84_Picture_0.jpeg)

![](_page_84_Picture_2.jpeg)

Wind power is the conversion of wind energy into mechanical energy by using wind turbines.

![](_page_84_Picture_4.jpeg)

1888, Cleveland, Ohio (USA) Charles F. Brush

Wind power plants in Xinjiang, China

![](_page_85_Picture_0.jpeg)

#### The wind source

The power extracted from an air stream that moves through a surface A can be calculated as follows:  $(\dot{m}, air mass flow rate [leg/s])$ 

$$\mathbf{P} = \frac{1}{2} \dot{\mathbf{m}} \mathbf{V}^2 = \frac{1}{2} \rho \mathbf{A} \mathbf{V}^3$$

where:  $\begin{cases} V & \text{air velocity } [m/s] \\ \rho & \text{air density } [kg/m^3] \end{cases}$ 

- $V_{ref}$  Wind velocity at the reference altitude  $z_0$
- $V_z$  Wind velocity at the altitude z
- **z**<sub>0</sub> Roughness length

![](_page_85_Picture_10.jpeg)

| Tarm      | Beaufort | Wind Speed, u |               |  |
|-----------|----------|---------------|---------------|--|
| Term      | Scale    | Knots         | $ms^{-1}$     |  |
| Calm      | 0        | <1            | < 0.515       |  |
| Light     | 1-2      | 1-7           | 0.515-3.605   |  |
| Gentle    | 3        | 7-11          | 3.605-5.665   |  |
| Moderate  | 4        | 11-17         | 5.665-8.755   |  |
| Fresh     | 5        | 17-22         | 8.755-11.330  |  |
| Strong    | 6–7      | 22-34         | 11.330-17.510 |  |
| Gale      | 8-9      | 34-48         | 17.510-24.720 |  |
| Storm     | 10 - 11  | 48-65         | 24.720-32.960 |  |
| Hurricane | 12       | >65           | >32.960       |  |

V

![](_page_86_Picture_0.jpeg)

#### Roughness

|       | Roughness | Landscape Type                                                                                                                    |  |  |  |
|-------|-----------|-----------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Class | Length m  |                                                                                                                                   |  |  |  |
| 0     | 0.0002    | Water surface                                                                                                                     |  |  |  |
| 0.5   | 0.0024    | Completely open terrain with a smooth surface, e.g.concrete runways in airports, mowed grass, etc.                                |  |  |  |
| 1     | 0.03      | Open agricultural area without fences and hedgerows and very scattered<br>buildings. Only softly rounded hills                    |  |  |  |
| 1.5   | 0.055     | Agricultural land with some houses and 8 metre tall sheltering hedgerows with a distance of approx. 1250 metres                   |  |  |  |
| 2     | 0.1       | Agricultural land with some houses and 8 metre tall sheltering hedgerows with a distance of approx. 500 metres                    |  |  |  |
| 2.5   | 0.2       | Agricultural land with many houses, shrubs and plants, or 8 metre tall sheltering hedgerows with a distance of approx. 250 metres |  |  |  |
| 3     | 0.4       | Villages, small towns, agricultural land with many or tall sheltering hedgerows,<br>forests and very rough and uneven terrain     |  |  |  |
| 3.5   | 0.8       | Larger cities with tall buildings                                                                                                 |  |  |  |
| 4     | 1.6       | Very large cities with tall buildings and skycrapers                                                                              |  |  |  |

![](_page_87_Picture_0.jpeg)

### Wind availability

#### WEIBULL DISTRIBUTION

$$f(V) = \frac{k}{c} \left(\frac{V}{c}\right)^{k-1} exp\left[-\left(\frac{V}{c}\right)^{k}\right]$$

![](_page_87_Figure_5.jpeg)

DISTRIBUZIONE DI WEIBULL CON C = 5 M/S

DISTRIBUZIONI CON K = 1.6

![](_page_87_Figure_7.jpeg)

![](_page_87_Figure_8.jpeg)

These parameters have to be determined by on-site measurements. Starting from the probabilistic Weibull curve several characteristic values can be defined, e.g.:

speed which corresponds to the maximum energy

speed with maximum probability

![](_page_87_Figure_12.jpeg)

![](_page_88_Picture_0.jpeg)

### **Power curve of a wind turbine (BETZ'S LAW)**

Considering the wind rotor an ideal energy converter (no friction factor and no rotational velocity component), it is not possible to capture more than 59.3% of the kinetic energy owned by the wind.

#### **BETZ'S LIMIT**

![](_page_88_Figure_5.jpeg)

![](_page_88_Figure_6.jpeg)

![](_page_89_Picture_0.jpeg)

![](_page_89_Figure_2.jpeg)

![](_page_90_Picture_0.jpeg)

![](_page_90_Figure_2.jpeg)

![](_page_91_Picture_0.jpeg)

![](_page_91_Picture_2.jpeg)

The term BIOMASS indicates a broad range of heterogeneous biological materials. This definition covers:

- Wastes from wood industry
- Wastes from paper mills
- Animal residuals
- Municipal solid waste
- Agricultural and forestry products and waste;
- Short rotation forestry dedicated to energy use;

![](_page_91_Picture_10.jpeg)

![](_page_92_Picture_0.jpeg)

#### **Biomass production**

![](_page_92_Figure_3.jpeg)

![](_page_93_Picture_0.jpeg)

![](_page_93_Figure_2.jpeg)

![](_page_94_Picture_0.jpeg)

#### **Conversion technologies**

![](_page_94_Figure_3.jpeg)

![](_page_95_Picture_0.jpeg)

# **Biomass power plant**

and the second second second second

![](_page_95_Picture_2.jpeg)

**Biomass power plant** 

| Biomass cogeneration plant i frano                  |                      |  |  |  |
|-----------------------------------------------------|----------------------|--|--|--|
| Nominal power of biomass fired<br>hot water boilers | 2 x 6 MW             |  |  |  |
| Nominal power of biomass fired thermal oil boiler   | 8 MW                 |  |  |  |
| Nominal thermal oil power to ORC                    | 6,2 MW               |  |  |  |
| Nominal electric power ORC                          | 1,1 MW <sub>el</sub> |  |  |  |
| Nominal power of oil fired stand-<br>by boiler      | 6 MW                 |  |  |  |
| Length of district heating net                      | about 21 km          |  |  |  |
| Connected thermal load                              | about 39 MW          |  |  |  |
| Nominal capacity of air coolers                     | 5 MW                 |  |  |  |

#### AIR COOLER

![](_page_95_Figure_6.jpeg)

#### Small systems

![](_page_95_Picture_8.jpeg)

![](_page_95_Picture_9.jpeg)

![](_page_95_Picture_10.jpeg)

![](_page_96_Picture_0.jpeg)

# **Biofuels**

![](_page_96_Figure_2.jpeg)

![](_page_97_Picture_0.jpeg)

- More than 99% of Earth mass has a temperature greater than 1000 °C.
- Earth's core maintains temperatures in excess of 5000 °C
- Heat energy continuously flows from hot core by convection and conduction processes.
- The heat flux at Earth's surface (about 16 kW/km2) tends to be strongest along tectonic boundaries.
- Volcanic activity transports hot materials near the surface (5-20 km beneath the surface).
- Hydrological convection forms high temperature geothermal systems (depth 500-3000m).

![](_page_97_Figure_8.jpeg)

![](_page_97_Figure_9.jpeg)

![](_page_98_Picture_0.jpeg)

#### Fumaroles

Fourpeaked volcano, Alaska

# <u>Geothermal</u> <u>phenomena</u>

#### **Geyser** Beehive Geyser (Yellowstone, USA)

#### Hot spring

Hot springs in Steamboat Springs area.

![](_page_99_Picture_0.jpeg)

Generally, a geothermal source is constituted by a natural underground heat storage whose exploitation is technically and economically feasible.

The type of geothermal application depends on the temperature level of the geothermal reservoir. Considering a standard geothermal temperature gradient (~3°C per 100m), the type of application is related to the depth:

![](_page_99_Picture_4.jpeg)

![](_page_99_Picture_5.jpeg)

- 0-1000 m: heating with heat pumps
- 1000-3500 m: heating using the aquifers
- 3500-6000 m: hot dry rock systems for heat and power generation.

![](_page_100_Picture_0.jpeg)

| Geothermal<br>reservoir<br>temperature | Fluid          | Common use                 | Type of installation                                                                                                            |
|----------------------------------------|----------------|----------------------------|---------------------------------------------------------------------------------------------------------------------------------|
| ≥ 220 °C                               | Water<br>Steam | Power<br>Direct fluid uses | <ul> <li>Flash steam</li> <li>Combined cycles</li> <li>Direct fluid use</li> <li>Heat Exchangers</li> <li>Heat pumps</li> </ul> |
| 100-220 °C                             | Water          | Power<br>Direct fluid uses | <ul><li>Binary cycle</li><li>Direct fluid use</li><li>Heat Exchangers</li><li>Heat pumps</li></ul>                              |
| 50-150 °C                              | Water          | Direct fluid uses          | <ul><li>Direct fluid use</li><li>Heat Exchangers</li><li>Heat pumps</li></ul>                                                   |

![](_page_101_Picture_0.jpeg)

#### <u>GEOTHERMAL HEAT PUMP</u> <u>SYSTEM</u>

![](_page_101_Figure_3.jpeg)

#### Geothermal Energy for the Home

![](_page_101_Figure_5.jpeg)

Geothermal heat can be used directly or for power generation. Here, two typical applications.

extraction

ً

extraction

**Re-injection** 

![](_page_102_Picture_0.jpeg)

# Dry system power plant

"Dry" steam is extracted from the geothermal reservoir and used directly to drive a turbo-generator. Then, the steam is condensed and pumped back into the ground.  $\bullet$  180-225 °C

- 4-8 Mpa
- 200+ km/h

![](_page_102_Figure_6.jpeg)

![](_page_102_Picture_7.jpeg)

First Geothermal Power Plant, 1904, Larderello, Italy

This is the oldest type of geothermal power plant. It was first used at Lardarello (Pisa) in Italy in 1904.

![](_page_103_Picture_0.jpeg)

## **Single/Double Flash Steam Power Plants**

The mixture water/steam is extracted from the ground. Thanks to the rapidly decrease of the pressure, the steam is separated from water.

Then, the steam drives a turbine and, later the condenser, is mixed with the separated water and re-injected in the ground.

![](_page_103_Figure_5.jpeg)

![](_page_104_Picture_0.jpeg)

# **Binary Cycle Power Plants**

Commonly used for water ground reservoir at low temperatures (120-180 °C), the Binary cycle uses the geothermal fluid to evaporate a secondary fluid through an heat exchanger.

The secondary fluid performs the thermodynamic cycle (as, e.g. Organic Rankine Cycle), while the geothermal one is re-injected in the ground.

![](_page_104_Figure_5.jpeg)

![](_page_105_Picture_0.jpeg)

# Hot dry rock systems (HDR)

The Hot Dry Rock (HDR) concept uses heat recovered from subsurface rocks to generate electricity. High pressure cold water is pumped down several kilometers (usually between 3 and 7 kilometers) into hot, porous rocks in order to extract heat. Then, hot steam returns to surface and it is used to generate power.

![](_page_105_Figure_4.jpeg)

![](_page_106_Picture_0.jpeg)

# Thanks for your attention Спасибо за внимание

#### Ing. Mattia De Rosa

mattia.derosa@unige.it m.derosa@hotmail.it

Tambov State Technical University (TГТУ)

20th October 2014